

AFRL-IF-RS-TR-2003-259

Final Technical Report
November 2003

A JAVA-BASED ACTIVE NETWORK OPERATING
SYSTEM (JANOS)

University of Utah

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. H136

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-259 has been reviewed and is approved for publication.

APPROVED: /S/

PAUL SIERAK
Project Engineer

 FOR THE DIRECTOR: /S/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

goodelle
Text Box
 STINFO FINAL REPORT

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
NOVEMBER 2003

3. REPORT TYPE AND DATES COVERED
Final Jun 99 – Feb 03

4. TITLE AND SUBTITLE
A JAVA-BASED ACTIVE NETWORK OPERATING SYSTEM (JANOS)

6. AUTHOR(S)
Jay Lepreau

5. FUNDING NUMBERS
C - F30602-99-1-0503
PE - 62301E
PR - H136
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Utah
School of Computing
50 South Central Campus Drive
Salt Lake City Utah 84112-9205

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-259

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Paul Sierak/IFGA/(315) 330-7346/ Paul.Sierak@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The JANOS projects’ primary objective was to develop a principle local operating system for active network nodes. The
operating system is oriented toward executing untrusted Java bytecode, primarily for management and control.

15. NUMBER OF PAGES
17

14. SUBJECT TERMS
Active Networks, JAVA Operating System

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Contents

1 Overview 1

2 The Janos Active Network Operating System 3

3 Java Operating Systems 4

3.1 Making the Case: OS Structure for Mobile Code .. 4

3.2 Modeling an Existing OS: The Alta Operating System. 4

3.3 Comparing Techniques: Surveying the Design of Java Operating Systems 5

3.4 Isolating a Key Issue: Drawing the Red Line in Java. 5

3.5 Processes in KaffeOS: Isolation, Resource Management, and Sharing in Java. 5

3.6 A Flexible Base: the JanosVM Java Virtual Machine. 6

3.7 Making it Standard: JSR-121 Java Isolates. 6

4 Other Technology Components of Janos 7

4.1 An OS Interface for Active Routers. 7

4.2 Hybrid Resource Control of Active Extensions . .. 7

4.3 The Java NodeOS . 8

4.4 Knit: Component Composition for Systems Software. 8

4.5 The OSKit . 8

5 Active Network Execution Environments 8

5.1 ANTS version 2.0 . 8

5.2 Bees: A Secure, Resource-Controlled, Java-Based Execution Environment 9

6 Active Applications 9

6.1 Active Protocols for Agile Censor-Resistant Networks. 9

6.2 TCP Meets Mobile Code .. 9

6.3 Other Active Applications . 10

7 Language and Compiler Technology 10

7.1 Memory Management: The Need for Predictable Garbage Collection. 10

7.2 Profiling, Debugging, and Improving the Kaffe Base. 10

8 Emulab/Netbed: an Integrated Network Testbed 11

References 11

i

i

1 Overview

The objective of the Janos project was to develop a principled local operating system for active network
nodes, oriented toward executing untrusted Java bytecode. The primary focus was resource management
and control, with a secondary objective of performance. Janos also provided technology transfer of broadly
and separately useful software components, in Open Source form.

Approach: Janos is a specialized but full-fledged operating system. Its primary target applications are
untrusted Java bytecode programs, but different levels of Janos can also execute several other types of
trusted and untrusted programs, written to different APIs, and in different languages. Janos is structured as
a single-address space operating systems, implemented primarily in the C and Java languages, containing a
custom Java virtual machine, theJanosVM. Instead of hardware-based memory protection, primary memory
protection derives from the safety properties of the Java language. However, unlike standard Java-based
systems, robust protection and control is provided by the JanosVM which supports inter-application isolation
within its sole instance.

Janos leverages experience providingresource controlin more traditional operating systems, including
extending the notion of a user/kernel boundary to a typesafe language environment. Janos supports controls
from the lowest levels, through the virtual machine, to applications. This includes obvious resources such
as CPU cycles, network bandwidth, and memory, and may include less obvious ones such as caching store,
persistent disk store, specialized hardware, and specialized data such as routing table entries. Resource
control, resource utilization, and accurate admission control are enhanced by the ability of Janos to load
both trusted native code components and verifiable components written in Cyclone, a safe dialect of C.
These components are assembled into flexible ”Click”-like router graphs for fast packet processing.

Underneath the JanosVM isMoab, acustom active network NodeOS. Moab builds on the UtahOSKit, a
large set of reusable components for constructing OS-like entities. The OSKit was extended with additional
components needed for a secure active network node such as controls on processor and network use. Moab
and the OSKit allow Janos to run directly on bare hardware or atop standard Unix—thereby enhancing
technology transfer.

Janos and its components demonstrated their worth in real application domains such as censor-resistant
publishing and distributed multiplayer simulation. Partially supported by this grant, we also developed a
large-scalenetwork testbedcalled Emulab with configurable control of the nodes, links, and topology. This
testbed, also available to researchers worldwide, provided a unique research instrument on which to evaluate
Janos, other NodeOS implementations, and complex active protocols.

Although the primary target of Janos is active networks, the project was structured to havebroad rel-
evance and impact. It produced separately useful NodeOS, Java VM, and active network runtime compo-
nents. The JanosVM, when customized with a domain-specific runtime, can provide strong resource control
and security wherever Java runs. As another route to broad impact, active involvement withspecification
effortsin both the active network and Java realms were goals of this project, successfully accomplished.

Software Releases and Service:During the course of this project, we made a large number of formal
software releases, for all the components. For example, our records indicate that during 2000–2002 we
made at least 29 formal, documented software releases. From October 2000 on, we also made our testbed
publically available and had hundreds of external researchers using it by the end of the Janos grant. For
example, even by July 2001 seven other projects in the DARPA Active Networks program were using it.

1

Scope, Funding, and Schedule: This project was originally budgeted at $2,826,411, but due to sev-
eral additional tasks (two technology integration demonstrations and responsibility for the maintainance/-
enhancement/replacement of the “ANTS” execution environment), received an additional $334,784, for a
total of $3,161,195. The additional tasking caused the grant duration to be extended another eight months.

Outline: The bulk of the rest of this report is structured around the technical areas, software systems, or
specifications explored or developed under this project. They fall into seven categories. The report concludes
with a list of publications.

1. The Janos Active Network Operating System

2. Java Operating Systems

3. Other Technology Components of Janos

4. Active Network Execution Environments

5. Active Applications

6. Language and Compiler Technology

7. Emulab/Netbed: an Integrated Network Testbed

2

2 The Janos Active Network Operating System

First we give a quick overview of the Janos architecture and its layers. Janos is an operating system for
active network nodes whose primary focus is strong resource management and control of untrusted active
applications written in Java. In a paper [1] that covered the whole system, we laid out the Janos design and
its rationale.

AA3 AA4AA1

OSKit
Moab

Execution
Environment
(EE)

Active

(AAs)
Application

}
}

NodeOS}

AA2

Janos Virtual Machine

Bees

Janos Java NodeOS Bindings

Figure 1: Janos Layers

The Janos Layers

Janos includes the three major components of a Java-based active network operating system: the low-level
NodeOS, a resource-aware Java Virtual Machine, and an active network protocol execution environment. In
reality, Janos is composed of five distinct software components, all of which are separately usable.

• The OSKit: A framework and a set of 34 component libraries oriented to operating systems, together
with extensive documentation.

• Moab: The layer implementing the “NodeOS” operating system API, built on the OSKit.

• JanosVM: A resource-aware, multi-process Java Virtual Machine. It can be tailored to and take
advantage of the Moab abstractions, resource and security interfaces.

• Java NodeOS:An implementation of the NodeOS abstractions and services in Java. It refines the
interface for Java, eliminating non-Java abstractions (such as address spaces), and adding support for
Java-isms (such as Classes).

• Execution Environments:Finally, Janos supports two distinct Execution Environments, the Active
Network Transport System (ANTS) and the more sophisticated Bees environment.

– ANTS v2.0: An enhanced version of the existing ANTS architecture that provides primitive
isolation and resource controls for active applications.

– Bees: A newly developed system that provides a rich environment for mobile code, a flexible
authentication and authorization mechanism, capability-based access to privileged resources,
and services for discovering and monitoring neighboring nodes.

3

3 Java Operating Systems

A fundamental part of our work was exploring the implications of applying OS structuring concepts to
operating systems that use the type-safe properties of the Java programming language to provide memory
safety, instead of using the hardware MMU to do so. We explored many aspects of the issues in numerous
experimental prototypes, with an emphasis onresource control.

3.1 Making the Case: OS Structure for Mobile Code

In our first effort in this domain, we designed and implemented “Alta,” an implementation of the highly-
structured Fluke [2] nested process model, but in a Java virtual machine instead of supported by hardware-
based memory protection.

In a highly competitive and visible OS workshop, we presented and published early results from our Alta
prototype [3], focusing on making the case for such a comprehensive approach. The majority of work on
protection in single-language mobile code environments focuses on information security issues and depends
on the language environment for solutions to the problems of resource management and process isolation.
We argued that what is needed in these environments are not ad-hoc or incremental changes but a coherent
approach to security, failure isolation, and resource management. Protection, separation, and control of the
resources used by mutually untrusting components, applets, applications, or agents are exactly the same
problems faced by multi-user operating systems. We argued that real solutions will come only if an OS
model is uniformly applied to these environments. We presentedAlta, our prototype Java-based system
patterned on Fluke, a highly structured, hardware-based OS, and reported on its features appropriate to
controlling mobile code. Several ideas from this work were then folded into the JanosVM, most importantly,
a method for sharing classes between processes.

3.2 Modeling an Existing OS: The Alta Operating System

Many modern systems, including web servers, database engines, and operating system kernels, use language-
based protection mechanisms to provide the safety and integrity traditionally supplied by hardware. As these
language-based systems become used in more demanding situations, they are faced with the same problems
that traditional operating systems have solved—namely shared resource management, process separation,
and per-process resource accounting. While many incremental changes to language-based, extensible sys-
tems have been proposed, we demonstrated in an implementation and a thesis [4] that comprehensive solu-
tions used in traditional operating systems are applicable and appropriate.

The thesis gives a detailed description of Alta, an implementation of the Fluke operating system’s nested
process model in a Java virtual machine. The nested process model is a hierarchical operating system
process model designed to provide a consistent approach to user-level, per-process resource accounting and
control. This model accounts for CPU usage, memory, and other resources through a combination of system
primitives and a flexible, capability-based mechanism.

Alta supports nested processes and interprocess communication. Java applications running on Alta can
create child processes and regulate the resources—the environment—of those processes. Alta demonstrates
that the Java environment is sufficient for hosting traditional operating system abstractions. Alta extends
the nested process model to encompass Java-specific resources such as class files, modifies the model to
leverage Java’s type safety, and extends the Java type system to support safe fine-grained sharing between
different applications. Existing Java applications work without modification on Alta.

4

Alta was compared in terms of structure, implementation and performance to Fluke and traditional
hardware-based operating systems. A small set of test applications demonstrated flexible, application-level
control over memory usage and file access.

3.3 Comparing Techniques: Surveying the Design of Java Operating Systems

Language-based extensible systems, such as Java Virtual Machines and SPIN, use type safety to provide
memory safety in a single address space. By using software to provide safety, they can support more effi-
cient IPC. Memory safety alone, however, is not sufficient to protect different applications from each other.
Such systems need to support aprocess modelthat enables the control and management of computational
resources. In particular, language-based extensible systems should support resource control mechanisms
analogous to those in standard operating systems. They need to support the separation of processes and
limit their use of resources, but still support safe and efficient IPC.

In a paper comparing very different systems we demonstrated how this challenge is being addressed in
three Java-based systems [5]. First, we laid out the design choices when implementing a process model in
Java. Second, we compared the solutions that have been explored in several projects: Alta, K0, and the
J-Kernel. Alta closely models the Fluke operating system; K0 is similar to a traditional monolithic kernel;
and the J-Kernel resembles a microkernel-based system. We compared how these systems support resource
control, and explore the tradeoffs between the various designs.

3.4 Isolating a Key Issue: Drawing the Red Line in Java

Software-based protection has become a viable alternative to hardware-based protection in systems based
on languages such as Java, but the absence of hardware mechanisms for protection has been coupled with
an absence of a user/kernel boundary. In a well-received paper [6] we showed why such a “red line” must
be present in order for a Java virtual machine to be as effective and as reliable as an operating system. We
discussed how the red line can be implemented using software mechanisms, and explained the ones we use
in the Java system that we are building.

The red line was originally implemented in KaffeOS in a fashion similar to traditional operating systems.
User processes requesting system services would cross the line into a kernel process where the request was
guaranteed to complete, regardless of asynchronous termination requests. Boundary crossings and system
services were then implemented directly in Java and colocated with user processes. Colocation of privileged
system code and objects with untrusted user code leads to benefits like increased performance and improved
accuracy in accounting of resources. Limiting access to the privileged parts of the system was done by
leveraging Java’s type-safety and fine-grained object access permissions.

3.5 Processes in KaffeOS: Isolation, Resource Management, and Sharing in Java

Single-language runtime systems, in the form of Java virtual machines, are widely deployed platforms for
executing untrusted mobile code. These runtimes provide some of the features that operating systems pro-
vide: inter-application memory protection and basic system services. They do not, however, provide the
ability to isolate applications from each other, or limit their resource consumption. We designed and im-
plemented KaffeOS, a Java runtime system that provides these features, and described its key aspects and
their rationale in great detail in a paper [7] and a thesis [8]. The KaffeOS architecture takes many lessons
from operating system design, such as the use of a user/kernel boundary, and employs garbage collection
techniques, such as write barriers.

5

The KaffeOS architecture supports the OS abstraction of a process in a Java virtual machine. Each
process executes as if it were run in its own virtual machine, including separate garbage collection of its own
heap. The difficulty in designing KaffeOS lay in balancing the goals of isolation and resource management
against the goal of allowing direct sharing of objects. Overall, KaffeOS is no more than 11% slower than
the freely available JVM on which it is based, which is an acceptable penalty for the safety that it provides.
Because of its implementation base, KaffeOS is substantially slower than commercial JVMs for trusted
code, but it clearly outperforms those JVMs in the presence of denial-of-service attacks or misbehaving
code.

3.6 A Flexible Base: the JanosVM Java Virtual Machine

The JanosVM is a Virtual Machine that can execute Java byte codes in multiple isolated contexts. The goal
of JanosVM is not to implement a full Java Operating System, rather, it aims to provide the components
used to implement a JavaOS. For example, there is basic functionality for interacting with concurrently
running processes, but noIPC system is directly exported to user code. Instead, an arbiter library can be
developed which maps the JanosVM primitives to a saferAPI, for example, a message passing system. It
is hoped that this approach affords more freedom for experimentation and specialization without requiring
each developer to roll their ownJVM.

Our previous experiences with JavaOSs served as the basis for much of the JanosVM’s design. Kaf-
feOS’s code base and overall design became the starting point, while thread migration and Alta’s flexible
typing provided some interesting variation. However, there were several changes in the final implementa-
tion of the JanosVM, usually in favor of making the system more resilient in the face of faults. First, the
KaffeOS garbage collector was changed to drop a processes’ memory instead of merging it into the kernel’s
heap. This removed the possibility of process memory allocated by native code leaking into the kernel,
an occasional source of grief while working on KaffeOS. Next, thread migration was used to replace the
transition between user processes and the kernel, thus allowing threads to switch to peer or server processes.
Because the system lies in a single hardware address space, there is no significant additional overhead in
this change and it enables the use of a microkernel-like design. Finally, a modified version of the Alta type
system was added to enable simple class sharing as well as type renaming. This addition allowed JanosVM
to continue to use a modified version of the java.lang package without precluding the possibility of a true
JDK compatible version.

3.7 Making it Standard: JSR-121 Java Isolates

Based on its active network research, the University of Utah was selected as an official representative on
the Expert Group associated with the Sun “Java Specification Request” for functionality that is slated to
become part of standard Java in the future. This is JSR-121, the “Application Isolation API Specification,”
for initiating and controlling computations isolated from each other. The scope of JSR-121 is limited to
isolation. However, this JSR is the beginning of a process in which much of the Java application isolation
and control that we researched and developed will eventually find its way into standard Java. JSR-121 is
crucially important: it clear isolation semantics, which Java previously lacked, will directly lead to more
robust and secure Java-based systems,

Not only did we take a leading role in the multi-year specification effort, but we demonstrated JanosVM’s
power and flexibility by quickly providing a prototype implementation of the initial JSR-121 “straw man”
API. Furthermore, we provided the first publicly available implementation of theAPI submitted for public
review.

6

4 Other Technology Components of Janos

4.1 An OS Interface for Active Routers

This paper [9] described an operating system interface for active routers. This interface allows code loaded
into active routers to access the router’s memory, communication, and computational resources on behalf
of different packet flows. In addition to motivating and describing the interface, the paper also reports
our experiences implementing the interface in three different OS environments: Scout, the OSKit, and the
exokernel.

We contributed a great deal to the development of a common set of abstractions for the lowest layer
of an active router, the NodeOS, and helped document them in specification document [10]. This interface
allows code loaded into active routers to access the router’s memory, communication, and computational
resources on behalf of different packet flows. We refined and validated the Active Network community’s
NodeOS specification through the on-going implementation of Moab, our implementation of the NodeOS
API on the OSKit. We drove the discussion on changes required for the channel and demultiplex key
specifications, memory models, threading, and file systems. Through our implementation, we validated the
threading model and the basic channel design.

Moab is built upon the OSKit, from which Moab gets a full complement of device drivers (originally
from Linux), several complete filesystems, a threading implementation, the FreeBSD networking stack, and
many support modules such as boot loaders and remote debugging support. One benefit of building on the
OSKit is thatPOSIX-reliant systems will work almost immediately on the OSKit, and can be incrementally
migrated to Moab. The NodeOS API is implemented as a library layered on top of the OSKit’s libraries.
Moab is not implemented as a traditional operating system; invocations of NodeOS functions are direct
function calls and do not “trap” into the OS. (Janos protects itself from untrusted code at the JanosVM
layer, not in the NodeOS.) Moab, like the OSKit, is written in C.

Moab can also be layered on top of a POSIX system in place of the OSKit, obviating the need for
a dedicated machine on which to run and simplifying development and debugging. However, in such a
configuration, some functionality is lost, most notably precise resource control. Currently configurations
exist for FreeBSD, Linux and Solaris.

4.2 Hybrid Resource Control of Active Extensions

Using Java provides a great deal of flexibility in Janos; however, it is not always sufficient to satisfy the raw
forwarding performance needs of some applications. In support of this, we explored alternative means of
extensibility that could be used in conjunction with the Java-based components. Our approach, outlined in
a paper [11], was to include an existing technology, MIT’s Click modular router, in the lowest layers of the
system and then address the safety concerns that arise, both memory safety and resource safety.

The ability of active network technology to allow customized router computation critically depends on
having resource control techniques that prevent buggy, malicious, or greedy code from affecting the integrity
or availability of node resources. It is hard to choose between static and dynamic checking for resource
control. Dynamic checking has the advantage of basing its decisions on precise real-time information about
what the extension is doing but causes runtime overhead and asynchronous termination. Static checking, on
the other hand, has the advantage of avoiding asynchronous termination and runtime overhead, but is overly
conservative. This work presents a hybrid solution: static checking is used to reject extremely resource-
greedy code from the kernel fast path, while dynamic checking is used to enforce overall resource control.

7

This hybrid solution reduces runtime overhead and avoids the problem of asynchronous termination by
delaying extension termination until times when no extension code is running, i.e., between processing of
packets.

We designed and created an initial implementation of the key parts of a hybrid resource control tech-
nique, called RBClick. RBClick is an extension of the Click modular router, customized for active network-
ing in Janos, an active network operating system. RBClick uses a modified version of Cyclone, a type-safe
version of C, to allow users to download new router extensions directly into the Janos kernel. Our mea-
surements of forwarding rates indicate that hybrid resource control can improve the performance of router
extensions by up to a factor of two.

4.3 The Java NodeOS

This is an implementation of the NodeOS abstractions and services, implemented in Java. It refines the
interface for Java, eliminating non-Java abstractions (such as address spaces), and adding support for Java-
isms (such as Classes). The Java NodeOS allows a Java-based EE author to build a NodeOS-compliant EE,
and run it on a regular JVMor on the JanosVM. ANTS2 is an example of an EE written to the Java NodeOS
API.

Our Java NodeOS implementation is portable to any Java system. It was used by many other institutions
in the Active Networks program, and numerous others.

4.4 Knit: Component Composition for Systems Software

Moab’s reliance on the OSKit created a need for easing the composition of components and regaining any
performance losses due to componentization. In pursuit of this goal we designed and developed a new com-
ponent definition and linking language called Knit, applied it to the OSKit, and explained it in a paper. [12].
Knit helps make C code more understandable and reusable by third parties, helps eliminate much of the
performance overhead of componentization, detects subtle errors in component composition that cannot be
caught with normal component type systems, and provides a foundation for developing future analyses over
C-based components, such as cross-component optimization. The language is especially designed for use
with component kits, where standard linking tools provide inadequate support for component configuration.
However, Knit is not OSKit-specific, and we have implemented parts of the Click modular router in terms
of Knit components to illustrate the expressiveness and flexibility of our language.

4.5 The OSKit

To support this project we made many enhancements to the OSKit [13], including adding network link
scheduling, polling network device drivers, real-time thread schedulers, real-time device access, and a port
of the OSKit to the StrongARM.

5 Active Network Execution Environments

5.1 ANTS version 2.0

ANTS is a Java-based toolkit for constructing an active network and its applications. We created “ANTSR”
(ANTS with Resource control) which became the base for ANTS v2.0. It includes many internal changes

8

for intelligent per-protocol and per-application resource controls. ANTS2 includes a nearly complete re-
structuring of the ANTS internals, while making few changes to the public ANTS API. It includes a new
prototype security subsystem that allows the runtime to make fine-grained access control decisions on a
per-application and per-protocol basis. We worked closely with the University of Washington to merge their
changes with ours to form ANTS v2.0, which was jointly released. We assumed maintenance of the ANTS
software line from then on.

5.2 Bees: A Secure, Resource-Controlled, Java-Based Execution Environment

Mobile code makes it possible for users to define the processing and protocols used to communicate with
a remote node, while still allowing the remote administrator to set the terms of interaction with that node.
However, mobile code cannot do anything useful without a rich execution environment, and no administrator
would install a rich environment that did not also provide strict controls over the resources consumed and
accessed by the mobile code.

Based on our experience with ANTS, we developed Bees [14], an execution environment that provides
better security, fine-grained control over capsule propagation, simple composition of active protocols, and a
more flexible mechanism for interacting with end-user programs. Bees’ security comes from a flexible au-
thentication and authorization mechanism, capability-based access to privileged resources, and integration
with our custom virtual machine that provides isolation, termination, and resource control. The enhance-
ments to the mobile code environment make it possible to compose a protocol with a number of “helper”
protocols. In addition, mobile code can now interact naturally with end-user programs, making it possible to
communicate with legacy applications. We believe that these features offer significant improvements over
the ANTS execution environment and create a more viable platform for active applications.

6 Active Applications

6.1 Active Protocols for Agile Censor-Resistant Networks

As a demonstration of the benefits of active networking we designed and implemented a prototype applica-
tion for combating censorship. In a paper [15] and a thesis [16] we argued that content distribution in the
face of censorship is a compelling and feasible application of active networking. In the face of a determined
and powerful adversary, every fixed protocol can become known and subsequently monitored, blocked, or its
member nodes identified and attacked. Frequent and diverse protocol change is key to allowing information
to continue to flow. Typically, decentralized and locally-customized protocol evolution is also an important
aspect in providing censor-resistance.

A programmable overlay network can provide this type of manually-initiated protocol diversification.
We implemented our prototype as an extension to Freenet, a peer-to-peer storage and retrieval system whose
goals include censor resistance and anonymity for information publishers and consumers.

6.2 TCP Meets Mobile Code

In joint work with the University of Washington, we also applied active networking principles to transport
protocols on end-hosts. In this work we used the “Cyclone” C-like typesafe language and Click router,
which we modified to have bounded resource use. In the paper [17] about the ideas and the prototype,
we argued that transport protocols such as TCP provide a rare domain in which protocol extensibility by

9

untrusted parties is both valuable and practical. TCP continues to be refined despite more than two decades
of progress, and the difficulties due to deployment delays and backwards-compatibility are well-known.
Remote extensibility, by which a host can ship the transport protocol code and dynamically load it on
another node in the network on a per-connection basis, directly tackles both of these problems. At the same
time, the unicast transport protocol domain is much narrower than other domains that use mobile code,
such as active networking, which helps to make extensibility feasible. The transport level provides a well
understood notion of global safety–TCP friendliness–while local safety can be guaranteed by isolation of
per-protocol state and use of recent safe-language technologies. We support these arguments by outlining
the design of XTCP, our extensible TCP framework.

6.3 Other Active Applications

We developed an active version [18] of the peer-to-peer protocol underlying the “Doom” networked multi-
player distributed simulation game. This project was an experiment in “activating” an existing peer-to-peer
protocol, to determine how in-network processing can improve protocol scalability and bandwidth consump-
tion. Non-game nodes route game packets while applying application-level knowledge to packet duplication,
aggregation, and compression. For comparison purposes, this “Active Doom” application was implemented
thrice: once using the base JanosVM APIs, a second time using ANTS2, and a third time in C.

Integration demonstrations: Twice we integrated our Janos software with that of 3-5 other contractors in
the DARPA in the Active Networks Program, joining in large joint technology demonstrations. Our “Team
3” was successful both times.

7 Language and Compiler Technology

Besides the work described above, our work on Kaffe and the JanosVM has included several infrastructure
projects.

7.1 Memory Management: The Need for Predictable Garbage Collection

Modern programming languages such as Java are increasingly being used to write systems programs. By
“systems programs,” we mean programs that provide critical services (compilers), are long-running (Web
servers), or have time-critical aspects (databases or query engines). One of the requirements of such pro-
grams is predictable behavior. Unfortunately, predictability is often compromised by the presence of garbage
collection. Various researchers have examined the feasibility of replacing garbage collection with forms of
stack allocation that are more predictable than GC, but the applicability of such research to systems pro-
grams had not previously been studied or measured. A particularly promising approach allocates objects in
thenth stack frame (instead of just the topmost frame): we call thisdeep stack allocation. In a detailed pa-
per [19] we presented dynamic profiling results for several Java programs to show that deep stack allocation
should benefit systems programs, and we described the approach that we are developing to perform deep
stack allocation in Java.

7.2 Profiling, Debugging, and Improving the Kaffe Base

We implemented a system for combined profiling of C and JIT’ed Java code in Kaffe. This makes it possible
to produce timing and call graph data covering both languages in a format that can be understood by the

10

GNU “gprof” program. In addition, this work was extended to support run-time debugging of programs in
the GNU debugger.

We performed major maintenance on the underlying Kaffe system. We contributed many fixes, en-
hanced compliance with the Java specification, increased robustness, and improved its threading system.
Our changes were continually incorporated into the base version of Kaffe.

Finally, great headway was made on the integration of the GCJ ahead-of-time Java compiler and Kaffe.

8 Emulab/Netbed: an Integrated Network Testbed

The Janos project heavily relied on the facilities provided by our 168-node public network testbed, Emulab,
and also helped develop it. Three experimental environments traditionally support network and distributed
systems research: network emulators, network simulators, and live networks. The continued use of multiple
approaches highlights both the value and inadequacy of each. Netbed, a descendant of Emulab, provides
an experimentation facility that integrates these approaches, allowing researchers to configure and access
networks composed of emulated, simulated, and wide-area nodes and links. Netbed’s primary goals are
ease of use, control, and realism, achieved through consistent use of virtualization and abstraction.

By providing operating system-like services, such as resource allocation and scheduling, and by virtu-
alizing heterogeneous resources, Netbed acts as a virtual machine for network experimentation. This paper
presents Netbed’s overall design and implementation and demonstrates its ability to improve experimental
automation and efficiency. These, in turn, lead to new methods of experimentation, including automated
parameter-space studies within emulation and straightforward comparisons of simulated, emulated, and
wide-area scenarios.

Since October 2000 this testbed has been available to researchers 24/7, despite being under constant
enhancement. In 2002 we published a paper [20] on its architecture and another on our vision for extending
similar benefits to the wireless environment. [21].

References

[1] Janos: A Java-Oriented OS for Active Network Nodes. Patrick Tullmann, Mike Hibler, and Jay
Lepreau.IEEE Journal on Selected Areas in Communications, 19(3):501–510, March 2001.

[2] Microkernels Meet Recursive Virtual Machines. Bryan Ford, Mike Hibler, Jay Lepreau, Patrick
Tullmann, Godmar Back, and Stephen Clawson. InProc. of the Second Symposium on Operating
Systems Design and Implementation, pages 137–151. USENIX Association, October 1996.

[3] Nested Java Processes: OS Structure for Mobile Code. Patrick Tullmann and Jay Lepreau. InProc.
of the Eighth ACM SIGOPS European Workshop, pages 111–117, Sintra, Portugal, September 1998.

[4] The Alta Operating System. Patrick A. Tullmann. Master’s thesis, University of Utah, December
1999. 104 pages. Also available at http://www.cs.utah.edu/flux/papers/tullmann-thesis-base.html.

[5] Techniques for the Design of Java Operating Systems. Godmar Back, Patrick Tullmann, Leigh
Stoller, Wilson C. Hsieh, and Jay Lepreau. InProc. of the 2000 USENIX Annual Technical Conf.,
pages 197–210, San Diego, CA, June 2000. USENIX Association.

11

[6] Drawing the Red Line in Java. Godmar V. Back and Wilson C. Hsieh. InProc. of the Seventh
Workshop on Hot Topics in Operating Systems, pages 116–121, Rio Rico, AZ, March 1999. IEEE
Computer Society.

[7] Processes in KaffeOS: Isolation, Resource Management, and Sharing in Java. Godmar Back,
Wilson C. Hsieh, and Jay Lepreau. InProc. of the Fourth Symposium on Operating Systems Design
and Implementation, pages 333–346, San Diego, CA, October 2000. USENIX Association.

[8] Isolation, Resource Management and Sharing in the KaffeOS Java Runtime System. Godmar V.
Back. PhD thesis, University of Utah, Salt Lake City, UT, May 2002.

[9] An OS Interface for Active Routers. Larry Peterson, Yitzchak Gottlieb, Mike Hibler, Patrick Tull-
mann, Jay Lepreau, Stephen Schwab, Hrishikesh Dandekar, Andrew Purtell, and John Hartman.IEEE
Journal on Selected Areas in Communications, 19(3):473–487, March 2001.

[10] NodeOS Interface Specification, Active Network NodeOS Working Group. Available as http://-
www.cs.princeton.edu/nsg/papers/nodeos.ps, January 2000.

[11] Hybrid Resource Control of Active Extensions. Parveen Patel and Jay Lepreau. InProc. of the
Sixth IEEE Conf. on Open Architectures and Network Programming (OPENARCH 2003), pages 23–
31, San Francisco, CA, April 2003.

[12] Knit: Component Composition for Systems Software. Alastair Reid, Matthew Flatt, Leigh Stoller,
Jay Lepreau, and Eric Eide. InProc. of the Fourth Symposium on Operating Systems Design and
Implementation, pages 347–360, San Diego, CA, October 2000. USENIX Association. http://-
www.cs.utah.edu/flux/papers/knit-osdi00-base.html.

[13] The Flux OSKit: A Substrate for OS and Language Research. Bryan Ford, Godmar Back, Greg
Benson, Jay Lepreau, Albert Lin, and Olin Shivers. InProc. of the 16th ACM Symposium on Operat-
ing Systems Principles, pages 38–51, St. Malo, France, October 1997. http://www.cs.utah.edu/flux/-
papers/oskit-sosp16.ps.gz.

[14] Bees: A Secure, Resource-Controlled, Java-Based Execution Environment. Tim Stack, Eric Eide,
and Jay Lepreau. InProc. of the Sixth IEEE Conf. on Open Architectures and Network Programming
(OPENARCH 2003), pages 97–106, San Francisco, CA, April 2003.

[15] Active Protocols for Agile Censor-Resistant Networks. Robert Ricci and Jay Lepreau. InProc. of
the Eighth Workshop on Hot Topics in Operating Systems. IEEE Computer Society, May 2001.

[16] Agile Protocols: an Application of Active Networking to Censor–Resistant Publishing Net-
works. Robert Ricci. Bachelor’s honors thesis, University of Utah, August 2001. 39 pages. http://-
www.cs.utah.edu/flux/papers/ricci-thesis-base.htm.

[17] TCP Meets Mobile Code. Parveen Patel, David Wetherall, Jay Lepreau, and Andrew Whitaker. In
Proc. of the Ninth Workshop on Hot Topics in Operating Systems, pages 157–162, Lihue, HI, May
2003.

[18] Active Doom: Applying Active Networks to Traditional Protocols. Austin Clements, Patrick Tull-
mann, and Jay Lepreau. In18th ACM Symposium on Operating Systems Principles, Banff, CA, Octo-
ber 2001. Work in Progress presentation.

12

[19] The Need for Predictable Garbage Collection. Alastair Reid, John McCorquodale, Jason Baker,
Wilson Hsieh, and Joseph Zachary. InSecond ACM SIGPLAN Workshop on Compiler Support for
System Software, pages 56–63, Atlanta, GA, May 1999.

[20] An Integrated Experimental Environment for Distributed Systems and Networks. Brian White,
Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb,
and Abhijeet Joglekar. InProc. of the Fifth Symposium on Operating Systems Design and Implemen-
tation, pages 255–270, Boston, MA, December 2002.

[21] Lowering the Barrier to Wireless and Mobile Experimentation. Brian White, Jay Lepreau, and
Shashi Guruprasad. InProc. HotNets-I, Princeton, NJ, October 2002.

13

